ماهي أهم مسميات فريق إدارة وتحليل البيانات وماهي أهم أدوارهم و مسؤولياتهم؟

مرفق وصف لأهم مسميات فريق إدارة وتحليل البيانات والتي تشمل: مهندس تعلم الآلة، عالم البيانات ، مهندس البيانات ، و محلل البيانات. كما هو مرفق في الصورة تم تحديد لكل مسمى وظيفي أهم الأدوار والمسؤوليات والمهارات المطلوبة وهي كما يلي: تصميم أنبوبة البيانات ، عمليات تعلم الآلة، إدارة البيانات، أدوات البيانات ،تطبيق النموذج، الإحصاء ونمذجة تعلم الآلة، السرد، الاستدلال، تصوير البيانات، التجربة، والمقاييس والتقارير.

What are the top titles of the data management and analysis team and what are their main roles and responsibilities?

Job Titles:
– ML Engineers: Design, build, and deploy machine learning models using programming languages and deep learning frameworks.
– Data Scientists: Extract insights from data using statistical and machine learning methods.
– Data Engineers: Build and maintain data infrastructure, create data pipelines, and ensure data quality and security.
– Data Analysts: Analyze and interpret data using statistical methods and present findings to stakeholders.

Roles & Responsibilities:
– Data Pipelines: Extract, transform, and load data from various sources into a centralized data storage system.
– ML Ops: Manage the machine learning lifecycle, from model development to deployment and monitoring.
– Data Management: Ensure data accuracy, consistency, and security through governance policies and data quality management.
– Data Tools: Use software and platforms to manage and analyze data, such as databases, data visualization tools, and business intelligence software.
– Model Deployment: Deploy machine learning models into production systems, ensuring scalability and efficiency.
– Statistics & ML Modeling: Use statistical and machine learning methods to analyze data and build predictive models.
– Storytelling: Communicate complex data insights and findings to non-technical stakeholders in a compelling and understandable way.
– Inference: Use statistical methods to draw conclusions about a population of interest based on a sample of data.
– Data Visualization: Create visual representations of data to facilitate understanding and exploration.
– Business Insights: Identify opportunities for growth or improvement based on data analysis and communicate insights to stakeholders.
– Experimentation: Design and conduct controlled experiments to test hypotheses.
– Metrics & Reporting: Define and track key performance indicators and create reports that communicate progress toward business goals.

As shown in the illustration from Exspanse, the map is identified between the required skills and job titles.

Leave a Reply

Your email address will not be published. Required fields are marked *